Introduction, p. 11
Chapitre I. Statistique descriptive.
Distributions à un caractère, p. 15
1. Données qualitatives, p. 15
2. Données ordonnées, p. 17
3. Données numériques, p. 19
- Donnés numériques linéaires, p. 20
- Moments, p. 27
4. Modèles théoriques, p. 36
- Distributions hypergéométriques, p. 37
- Distribution de Laplace-Gauss, p. 39
- Remarque sur le choix d'un modèle, p. 45
5. Données numériques circulaires, p. 45
- Diagramme, p. 47
- Description statistique par les coefficients de Fourier, p. 47
- Indicateur de valeur centrale, p. 48
- Indicateur de dispersion, p. 48
- Modèles théoriques, p. 50
Chapitre II. Estimation, p. 55
1. Estimation du nombre de classes d'une distribution par la méthode du maximum de vraisemblance, p. 56
- Présentation, p. 56
- Utilisation de la table 12, p. 62
2. Estimation des paramètres de distribution d'une varaiable linéaire, p. 64
- Estimation de la moyenne dans le cas d'un caractère à peu près normalement distribué, p. 64
- Estimation de la variance, p. 67
3. Estimation des paramètres k et phi d'une distribution circulaire, p. 73
Chapitre III. Tests statistiques, p. 75
1. Tests paramétriques, p. 76
- 1. Comparaison de moyennes par le test de Student, p. 76
- 2. Comparaison de variances par le test de Fisher, p. 78
2. Tests non-paramétriques, p. 79
- 1. Tst du Chi2 comme test d'homogénéité, p. 79
- 2. Test non-paramétrique d'homogénéité de distributions linéaires : test de Wilcoxon, p. 86
- 3. Test non-paramétrique d'homogénéité de distributions circulaires, p. 92
3. Tests de normalité, p. 99
- 1. Test de K. Pearson, p. 99
- 2. Test du Chi 2 d'adéquation à la loi normale, p. 102
- 3. Test de Kolmogorov, p. 106
Chapitre IV. Distribution à deux caractères, p. 109
1. Etude simultanée de deux caractères numériques, p. 109
2. Représentation graphique : le nuage de points, p. 110
3. Droite des moindres carrés ou droite de régression de y en x, p. 115
- Détermination des coefficients a et b de la droite de régression de y et x, p. 116
- Covariance, p. 118
- Expression de a et b en fonction de la variance, p. 118
- Coefficient de corrélation linéaire rx, y, p. 118
- Méthode de calcul des coefficients a et b, p. 121
4. Application numérique, p. 122
5. Variable de corrélation transformée z, p. 124
- Définition de z, p. 124
- Estimation de z, p. 124
6. Estimation de r, p. 125
7. Droite d'ajustement de x et y, p. 125
8. Calculs complémentaires, p. 126
retour à la page précédente